

A proportional-integral-derivative controller (PID controller or three term controller) is a control loop feedback mechanism widely used in industrial control systems and a variety of other applications requiring continuously modulated control. A PID controller continuously calculates an error value as the difference between a desired setpoint (SV) and a measured process variable (PV) and applies a correction based on proportional, integral, and derivative terms (denoted P, I, and D respectively) which give the controller its name.

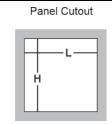
PT244A/ PT344A/ PT444A is a two-set point PID controller. It is available in touch & keypad version. Customized iconic display interprets status easily.

Caution for your safety

WIRING: The probe and its corresponding wires should never be installed in a conduit next to control or power supply lines. The electrical wiring should be done as shown in the diagram. The power supply circuit should be connected to a protection switch. The terminals admit wires of upto 2.5sq mm.

WARNING: Improper wiring may cause irreparable damage and personal injury. Kindly ensure that wiring is done by qualified

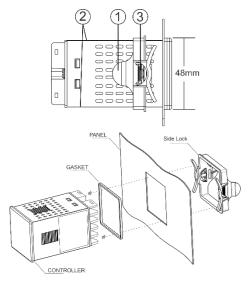
 $\textbf{Maintenance:} \ \textbf{Cleaning:} \ \textbf{Clean the surface of the controller with a soft}$ moist cloth. Do not use abrasive detergents, petrol, alcohol or


Notice: The information in this document is subject to change in order to improve reliability, design or function without prior notice and does not represent a commitment on the part of the company. In no event will the company be liable for direct, indirect, special, incidental or consequential damage arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages. No part of this manual may be reproduced or transmitted in any form or by any means without the prior written permission of

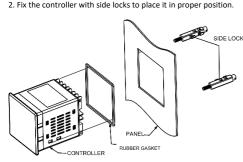
Controller: Controller should be installed in a place protected by vibration, water and corrosive gasses and where ambient temperature does not exceed the values specified in the technical

Probe: To give a correct reading, the probe must be installed in a place protected from thermal influences, which may affect the temperature

Dimensions & Panel Cutout

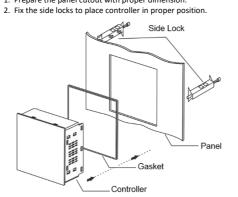


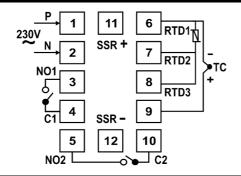
Sr.	Model	Dimensions (L x H) mm	Panel Cut-out (L x H) mm
1	PT244A-T/K	45.5 X 45.5	48 X 48
2	PT344A-T/K	68 X 68	72 X 72
3	PT444A-T/K	92 X 92	96 X 96


Product Mounting (PT244A-T/K)

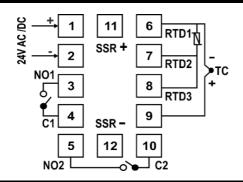
Installation: Fixing and dimensions of panel models: To fix the unit, slide the fastener (1) through the guides (2) as per the position shown in the figure. Move the fastener in the direction of the arrow, pressing tab 3 it permits to move the fastener in the opposite direction of the arrow

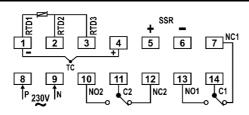
oduct Mounting (PT344A-T/K)

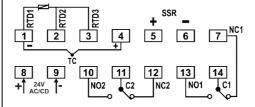

1. Prepare the panel cutout with proper dimension


Product Mounting (PT444A-T/K)

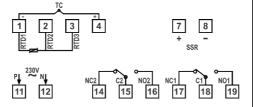
Installation:

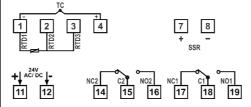

1. Prepare the panel cutout with proper dimension.


Connection Diagram (for PT244A-T/K)



Connection Diagram (for PT244A-T/K – 24V)




Connection Diagram (for PT344A-T/K)

Connection Diagram (for PT444A-T/K)

15 RLrn

Sr. No	Parameter	Description
		User Interface
		Technical Specification
		Model description
		Input types & Input range
		Working
		Initial display when Power is ON
		Parameter setting mode
		Set mode
1	5EE 1	To set control1 set point.
2	5862	To set control2 set point.
3	d <u>u</u> EL	Sets the dwell time.
		LEVEL 1
4	InPt	Sets type of input sensor.
5	Inb	Sets input correction.
6	X5	Sets the upper limit of PV input.
7	L Su	Sets the lower limit of PV input.
8	HE-R	To set maximum allowable high temperature range.
9	LE-R	To set minimum allowable low temperature range.
10	[nt2	Sets control action for relay2
11	bAnd	To set ON/OFF for relay2 in band control action
12	HYS2	Set the hysteresis for ON-OFF action in Control2.
13	9F25	Time delay between control output 2 restart
14	ñodZ	Sets the alarm type.

Sets AL1 icon as alarm relay ON/OFF indicator

16	dF	Sets digital filter time.
17	rSt	To restore default setting of the controller.
		LEVEL 2
18	[nt	Sets control action for relay1.
19	RŁ	Runs auto tuning.
20	[Y[t	Sets cycle time for PID action.
21	Р	Sets proportional band.
22	1	Sets Integration band.
23	d	Sets differential band.
24	HYS !	Set hysteresis for ON/OFF action in Control1.
25	dLY!	Time delay between control output1 restart
26	out	To select Relay/SSR/Both
27	Lo[To lock Parameter.
28	Lo[1	To lock set point.
		Pro-key (On-request)
		LED Indications
		Error Messages
		Alarm Types

User Interface

		PT244Å-T \$ub-20ro		
		10 11 12 13		
Sr.	Description			
No	_			
1		Value (PV)		
		node: Displays current measured value.		
_		NG mode: Displays parameter.		
2	Set value	mode: Displays set value.		
		ays countdown time when Dwell timer is running.		
		NG mode: Displays set value of parameter.		
3	°C	Displays the Temperature unit.		
4	OUT1	Turns ON while control output1 is ON.		
5	OUT2	Turns ON while control output2 is ON.		
6		Turns ON when the corresponding alarm out		
	AL1	turns ON.		
7	AUTO	Flashes when auto tuning is in progress.		
8	DWL	Flashes during Dwell timer is in progress.		
	DWL	Continuous ON: Dwell time elapsed.		
9	m -0	Turns ON when keypad is locked.		
10	C	Next key:		
		Used to enters parameters level, moves to next		
		parameters. Press & hold this key at least 500m seconds to		
		enter in set mode.		
		Press & hold this key at least 2 seconds to enter		
		in Level1 Parameters.		
		Press & hold this key at least 4 seconds to enter		
		in Level2 Parameters.		
11	~	Down / Reset key:		
	RST	Used in Program mode to decrement parameter		
		value.		
		Used to reset the Dwell timer.		
12	AT	Up / AT key:		
		Used in Program mode to increment parameter value.		
		Press this key for 2 seconds to start or stop auto-		
		tuning.		
13	R	Exit key:		
		Press this key to save the setting value and to		
		exit the programing mode.		

Housing **Dimensions (PT244A)** Panel Cutout (PT244A) Dimensions (PT344A) Panel Cutout (PT344A) Dimensions (PT444A) Panel Cutout (PT444A) Mounting

Protection Connections

Display (PT244A)

Display (PT344A)

Data storage Operating temp. Operating humidity Storage temp. Power input

Control output

Auxiliary output Control output

Auxiliary output Input Type Resolution **Display Accuracy**

: Polycarbonate Plastic : Frontal: 48 X 48mm, Depth: 78mm : 45.5 X 45.5mm

Also used to access the Pro-key function.

: Frontal: 72 X 72mm, Depth: 84mm : 68 X 68mm : Frontal: 96 X 96mm, Depth: 61mm : 92 X 92mm

: Flush panel mounting with fasteners : IP65 Front : Terminal connectors.

< 2.5sg mm terminal only. : 4 X 17mm 7 segment Red/White display 4 X 8mm 7 segments Green display

7 Iconic LEDs for Indication : 4 X 20mm 7 segment Red/White display, 4 X 9.5mm 7 segment Green display 7 Iconic LEDs for Indication : Non-volatile flash memory

: 0°C to 60°C (non-condensing) : 20% to 85% (non-condensing) : -25°C to 60°C (non-condensing) : 230Vac ± 15%, 50/60Hz Standard. 85 to 265Vac, 12/24Vdc on request. : (For all PT244A-T / PT244A-K)

Relay: 7A, 230V AC (Res.) or SSR (field selectable): 10V DC. 30mA (For all PT244A-T / PT244A-K) Relay: 7A, 230V AC (Res.)

: (For all PT344A-T/K - PT444A-T/K)

Relay: 10A, 230V AC (Resistive) or SSR (field selectable): 10V DC. 30mA : (For all PT344A-T/K - PT444A-T/K)

Relay: 10A, 230V AC (Resistive) RTD: Pt100

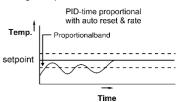
: 0.1°C / 1°C for RTD (Pt100) input 1°C for Thermocouple (J. K) input : 0.3% of F.S (20 min of settling time for TC)

Thermocouple: J. K

Sampling Period : 1 second

Model Description 2. PT244A-K-R2C34 2. PT344A-K-R2C34 2. PT444A-K-R2C34 3. PT244A-T-W5C34 3. PT344A-T-W5C34 3. PT444A-T-W5C34 4. PT244A-K-R5C34 4. PT344A-K-R5C34 4. PT444A-K-R5C34

Input types & Input range


Input Type		Decimal Point	Display	Input Range (°C)
Thermocouple	J	1]	-50 to 750°C
mermocoupie	K	1	F.	-50 to 1200°C
RTD	Pt	1	rtdl	-99 to 400°C
KID	100	0.1	rtd.1	-99.9 to 400.0°C

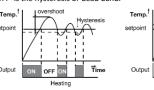
Working

1. Auto tuning

The Auto-tuning function automatically computes and sets the proportional band (P), Integral time (I), Derivative time (D) as per process characteristics.

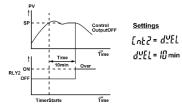
While Auto-tune is in progress "AUTO" led will flashing. After Auto-tuning is complete the "AUTO" led will turn OFF.

If auto -tuning is not complete after 3-4 cycles, it is suspected to fail. In this case, check the wiring & parameters such as the control action input type etc.


Carry out the auto-tuning again, if there is a change in set point or process parameters.

Note: When Auto tuning in progress, user cannot change the parameter value.

2. ON/OFF control action (For Heating mode)


The relay is 'ON' up to the set temperature and cuts "OFF" above the set temperature. As the temperature of the system drops, the relay is switched 'ON' at a temperature lower than the set point.

The difference between the temperature at which relay switches 'OFF' is the hysteresis or dead band.

3. Dwell Timer

A dwell timer is used to control a process at a fixed temperature for a defined period. Once the process reaches the setpoint, dwell timer starts to count until time out. After the time completes, control output goes OFF and auxiliary output energies as an alarm.

- 1) Countdown timer is displayed on the lower display. Once total time elapsed lower display will show "donE".
- 2) DWL icon LED blinking indicates that dwell timer is in progress. It switches to continuous 'ON' when dwell timer is over.
- 3) If Dwell time programmed as OFF, it will disable the dwell timer. 4) When soak in progress & dwell time is modified, new dwell time is applicable
- 5) The dwell period can be reduced or increased when the timer is running. If it is reduced to meet the time elapsed. The timer will change to the end state.
- 6) Once the timer output was energized it can be reset with the

Initial Display when Power is ON

When power is On, entire display part will flash for 3 sec, Software revision will flash for 2 sec, Hardware revision will flash for 2 sec and

1. Entire display Part

2. Run Mode

Parameter Setting Mode

SET MODE

1. SEE ! Function: To set control1 set point. Press & hold key for 500mSec to enter set mode

Display will show 588 . User can change 588 value using UP/ DOWN keys. Holding the key, will change the value at a faster rate. Press key to store the desired value & move on to the next parameter. Set value also can be stored by pressing $\boxed{\mathbf{E}}_{\text{key}}$.

-	•		
	Min	Max	Fac.
	L5u	H5u	₿°C

2. SEE2 Function: To set control2 set point.

This parameter is prompted only if Relay 2 is configured in [nt], 1.As absolute auxiliary control or as an alarm (High/Low) mode. 2.As deviation auxiliary control or as a deviation alarm mode.

Note: If [nt] set to OFF, SEE2 will not be shown in the SP setting

LD	t be shown in the 3P setting.				
	Min	Max	Fac.		
	L 5u	K5u	Ũ°C		

Function: Sets the dwell time.

This parameter is prompted only if Relay 2 is configured in $\[\text{lnk2} \]$ as

For dwell timer operation please refer Working section.

Min	Max	Fac.
oFF	9999min	oFF

LEVEL1 Parameter

Press & hold key for 2 seconds to enter into Level1 parameter setting (LEull will flash).

When release the key, $\hfill \Box$ will flash.

Press **UP/DOWN** keys to modify the set value and to go to the next parameter by pressing key.

Press the key to save the set value and to come out of parameter setting after changing the set value.

Function: Sets the type of input sensor. While changing the sensor type 5Et 1, 5Et 2, Inb, H5u, L5u, HE-R.

Lt-nparameters of level1 will reset accordingly. For type of input sensor & range please refer "Input types & Input range" table.

> For J type sensor Min Max Fac. rtd.1

5. Inb Function: Sets input correction

In time it may be possible that the display may be offset by a degree or so.

To compensate for this error, user may need to add or minus the degrees required to achieve the correct temperature.

Example: The temperature on the display is 28°C, whereas the actual temperature is 30°C. User will have to set the " hb " parameter to 2°C, which means that once out of the programming mode, the temperature on display will be 30°C (28°C+ 2°C).

Min	Max	Fac.
-10°C	10°C	0°C

Function: Sets the upper limit of PV input.

Sets the maximum limit for set point adjustment. It can be set from LSu+1 value to maximum specified range of selected sensor. Once set at a particular value, this will not allow the set point to go

When changing the setting value and SV > HSV, SV will reset as HSV.

For J type sensor			
Min	Max	Fac.	
<u> 15u</u> +1	750°C	750°C	

Function: Sets the lower limit of PV input. 7. LSu Sets the minimum limit for set point adjustment. It can be set from

minimum specified range of selected sensor to "" value. Once set at a particular value, this will not allow the set point to go

below this value. When changing the setting value and SV < LSV, SV will reset as LSV.

	For J type sensor			
	Min	Max	Fac.	
	-50°C	H5u-1	-50°C	

Max

H5u-1

Fac.

H5u-1

Function: To set maximum allowable high 8. HE-R temperature limit.

Example: If this parameter is set to 700°C and the temperature reaches or goes above 700°C, display will show "L" (High Temp.) alarm indicating that the temperature has reached or gone above the value set in this parameter.

Note: Ht fault will be ignored at every power ON

XI-	Min
(Message on display)	LER+1

Function: To set minimum allowable low 9. LE-A temperature limit.

Example: If this parameter is set to -40°C and the temperature reaches or goes below -40°C, display will show Lt (Low temp) alarm indicating that the temperature has reached or gone below the value set in this parameter

Note: Lt fault will be ignored at every power ON.

LŁ	
Message on display)	

Min	Max	Fac.
L5u+1	HER-I	L5u+1

10. [nt 2 Function: Sets control action for relay2.

This parameter used to set required control action for output 2 as,

off = No action

HERE = Heating [ool = Cooling

duEL = Dwell time

bRnd = Band alarm

Min	Max	Fac.
oFF	bAnd	HERL

Function: To set ON/OFF for relay2 in band 11. bRnd control action.

Example: When HE-Risets as 300 & LE-Riset as 200 in between this values relay 2 will be OFF or ON according to band parameter selection above and below of selected range.

rlan = ON rLoF = OFF

Min	Max	Fac.
rLoF	rLan	rLoF

Function: Set the hysteresis for ON-OFF action 12. HYS? in Control2.

This parameter will be prompted only if selected control action is HEAL (Heating) or Look (Cooling) in Lake setting. It sets the dead band between ON & OFF switching of the output.

Example (For Cooling control): If the set point is set at 100 C and hysteresis is set at 2°C, then when the system reaches 100°C, the heater relay will go OFF. Since the hysteresis is 2°C, the heater relay

Min	Max	Fac.
1°C	100°C	2°C

Function: To set time delay between output2 13. dLY2 restart.

Use UP/DOWN keys to set desired value.

will get ON (restart) at 102°C (100°C +2°C).

This parameter is used to protect the output device from restarting in a short period of time.

Example: If this parameter is set to 60 Sec, Output 2 goes OFF at the set point, it will not restart until time delay completes, even if differential is achieved earlier.

Note: If set to 0, dly parameter will be ignored

	Min	Max	Fac.
	0sec	1200sec	10sec
Function: To set (ON/OFF	for relav2	in band

14. node control action. It's applicable when [nt] is HEAL (Heating) or [aal (Cooling).

705: Absolute

dEu: Deviation

For Alarm Types setting, please refer Alarm Type description Deviation

	R65	dEu	R65
AL1	icon as a	larm relay	ON/OFF

Max Fac.

Min

Function: Sets A 15. ALrn indicator for alarm indication

Set " "[5" to enable AL1 icon.

AL1 icon turns ON when the corresponding alarm output turns ON. Type of alarm can selected by using Mod2 parameter.

Min	Max	Fac.
no	YES	ć

ւ6. ^{վ։}	Function: Sets control action for rela

It differentiate between measured noise and actual changes For accurate control, increase df value as desired.

For faster response, set df value minimum.

Useful to debug setting related proble

Min	Max	Fac.
ωFF	2	1

Function: To restore default settings of the

17. rSt controller When set to $\frac{y_{1}^{2}}{2}$ all parameter are programmed to factory values.

11113	٠.		
	Min	Max	Fac.
	no	YE 5	no

LEVEL2 Parameter

Press & hold key for 4 seconds to enter into Level2 parameter setting (LEuld will flash). When release the key, Lnt will flash. Press **UP/DOWN** keys to modify the set value and to go to the next parameter by pressing 🗖 key.

Press the key to save the set value and to come out of parameter setting after changing the set value.

18. Ent 1 Function: Sets control action for Relay 1/ SSR.

This parameter used to set required control action for relay 1/ SSR as,

off = No action

HERE = Heating [aaL = Cooling

Pld = PID

Min	Max	Fac.
oFF	P Id	P Id

19. AL Function: Runs auto tuning.

This parameter is used to set YES/NO to start and stop Auto-tuning. When set as JE5, the unit starts auto-tuning. After Completing no is automatically Set.

During auto-tuning, the AUTO icon is continuously ON. This parameter will be prompted only if selected control action is PID

Min	Max	Fac.
no	YE5	na

20. [Y[E Function: Sets cycle time for PID action.

Cycle time also known as duty cycle, the total length of time for the controller to complete one ON/OFF cycle user can set cycle time. When auto tuning is competed, it will calculated automatically

Example: With a 20 second cycle time, an on time of 10 seconds and an OFF time of 10 seconds represents a 50 percent power output. The controller will cycle ON and OFF while within the proportional band.

Min	Max	Fac.
1sec	60sec	15sec

21. ^p	Function: Sets proportional band.
------------------	-----------------------------------

Term P is proportional to the current value of the SV-PV error.

Example: If the (SV-PV) error is large and positive, the control output will be proportionately large and positive and vice versa if error is

Min	Max	Fac.
0.1°C	100.0°C	10.0°C

22.	Function: Sets integration time.
-----	----------------------------------

Term I accounts for past values of the SV-PV error and integrates then over time to produce the I term.

Example: If there is a residual SV-PV error after the application of proportional control, the integral term seeks to eliminate the residual error by adding a control effect due to the historic cumulative value of the error.

Setting "0" will turn OFF integration.

Min	Max	Fac.
0sec	2000sec	120sec

23. d Function: Sets differential time.

Term D is a best estimate of the future trend of the SV-PV error, based on its current rate of change. It is sometimes called "anticipatory control", as it is effectively seeking to reduce the effect of the SV-PV error by exerting a control influence generated by the rate of error change. The more rapid the change, the greater the controlling or dampening effect.

Setting "0" will turn OFF differential

Min	Max	Fac.
0sec	1000sec	30sec

Function: Set the hysteresis width for ON-OFF 24. HYS I action in Control1.

This parameter will be prompted only if selected control action is HERE (Heating) or Look (Cooling) in Lot I setting.

It sets the dead band between ON & OFF switching of the output.

Example (For COOL control): If the set point is set at 100°C and

hysteresis is set at 2°C, then when the system reaches 100°C, the heater relay will go OFF. Since the hysteresis is 2°C, the heater relay will get ON (restart) at 102°C (100°C +2°C).

Min	Max	Fac.
1°C	100°C	2°C

Function: To set time delay between output1 25. dLY1

Use UP/DOWN keys to set desired value.

This parameter is used to protect the output device from restarting in a short period of time.

Example: If this parameter is set to 10 Sec. Output 1 goes OFF at the set point, it will not restart until time delay completes, even it differential is achieved earlier.

Note: If set to 0, dly parameter will be ignored.

Min	Max	Fac.
Osec	1200sec	10sec

26. Out	Function: Sets Control output1.
This parameter	used to set required control action for output1 as,

rly = Relay bot# = Both

User has to set this parameter in accordance with the output used.

Min	Max	Fac.
55-	botX	botK

27. Lo[Function: To lock keypad.

This parameter is used to lock the parameter so that tampering is not possible by by-standers.

no = Unlocked parameter JES = Locked parameter

When locked all parameters can only be viewed, but cannot be

m 0 (Parameter Locked)

Min	Max	Fac.
no	YE 5	no

28. Lo[1 Function: To lock set point.

This parameter is used to lock the parameter so that tampering is not possible by by-standers.

no = Unlocked set point JES = Locked set point

When locked all parameters can only be viewed, but cannot be

ल 0 (Set point Locked)

Min	Max	Fac.
no	YE 5	no

Pro-Key (On Request)

To use Pro-key user must insert it prior to power ON. Insert the prokey and power ON controller. When the display flashes for 5 seconds, touch the 🕃 key for 1 second. Controller will enter into Pro-key mode and will display " ${p_{r_Q}}{\nu}$ ". Then touch either of the below given keys to use the Pro-key

Function	Keys to be Used
To upload the parameters to the controller	touch "🚠 " key
To download the parameters to the controller	touch "FST " key
To set and exit	touch " 🗔 " key

If user tries to enter Pro-key mode without inserting the pro-key or with wrong connection, no further function will be activated after displaying " 🚠 or 🐯 ". Controller will display " 🎜 r o μ ". Then switch off controller and insert the pro key properly and try to enter Pro key

User has to first Upload the parameters in the Subzero Validated Blank Pro-Key and then subsequently use it for downloading.

Uploading mode

Press $\stackrel{\clubsuit}{\underset{\hbox{\scriptsize AT}}{\blacksquare}}$ key to upload the parameters to Pro Key.

Lower display will show "u-o" once uploading is done. Press 🗇 to exit display will show "----" and return to normal display

• Downloading mode

Similarly connect Pro key to the controller.

Press key to download all parameters from Pro key to the

Lower display will show " d - ol " once download is done. Once done press 🗇 key to exit and display will flash and return to

ormal mode. PT444A

LED Indication LED Status Description Output1 ON. ON OUT1 Output1 OFF OFF ON Output2 ON. OFF Output2 OFF. FLASHING Tuning is in progress. **AUTO** OFF Tuning Stop. **FLASHING** Dwell timer is in progress. ON Dwell time elapsed DWL OFF Dwell timer disabled. ON Alarm relay ON. OFF Alarm relay OFF. AL1 ON Alarm indication ON OFF Alarm indication OFF. ON Parameters are Locked m 0 OFF Parameters are Unlocked ON Set point are Locked.

Error Messages		
Message	Description	
opEn	Displays when input sensor is disconnected or sensor is not connected.	
HHHH	Flashes when measured value is higher than input range.	
LLLL	Flashes when measured value is lower than input range.	
HŁ	Temperature above the maximum high temperature limit.	
LŁ	Temperature below the minimum low temperature limit.	

Set point are Unlocked

Calibration Certificate

DATE	
MODEL NO.	
CONTROLLER SR. NO.	

Claimed Accuracy: 0.3% of FS

(20 min of settling time for TC inputs)

Calibration Instrument & Sr. No: Calibrated ON : Valid Upto

The calibration of this unit has been verified at the following values:

	SENSOR TYPE	VALUE TESTED (°C)	VALUE Observed (°C)
	RTD	0°C	
		100°C	
		350°C	All values within
			specified limit of accuracy
	J, K	400°C	
		650°C	

Instrument is confirmed accepted as accuracy is within the specified limit. This certificate is valid up to 18 months from the date of manufacturing or 12 months from date of sale from authorized dealer, whichever is earlier

Checked By:

(Specification are subject to change, since development is a continuous process.)

PVR Controls, India

Disclaimer: These manual & its contents remain the sole property of PVR CONTROLS, India and shall not be reproduced or distributed without authorization. Although great care has been taken in the preparation of this document, the firm or its vendors in no event will be liable for direct, indirect, special, incidental or consequential damage arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages. Prospective purchasers should not confine themselves to the contents but should make their own enquiries to satisfy themselves in all respects. No part of this manual may be reproduced or transmitted in any form or by any means without the prior written permission of the firm. PVR CONTROLS, reserves the right to make and changes or improvements without prior notice. PVR CONTROLS will not accept any responsibility should any details prove to be incomplete or incorrect PVR CONTROLS assumes no responsibility for any misleading content, or incorrectly listed information due to inaccuracies in content or data supplied by any source to the information available.

Warranty: This product is warranted against defects in materials and workmanship for a period of one year from the date of purchase. During the warranty period, product determined by us to be defective in form or function will be repaired or, at our option, replaced at no charge. Such rectification shall be provided / carried out only upon submitting a valid purchase receipt. Any claim raised after warranty period shall not be entertained. This warranty does not apply if the product has been damaged by accident, abuse, willful default on part of the user, negligent use and misuse or as a result of service or modification other than by the firm. (De)mounting and/or $\,$ (de)installation, and labor costs are excluded from warranty. In no event shall the firm be held liable for incidental or consequential damages, including loss of revenue or loss of business opportunity arising from the purchase of this product nor compensate you for any reason whatsoever.

OUR OTHER PRODUCTS

Digital Panel Meter. Power Analyzer Timer, PLC, HMI, Data Logger

REV0 - 28.12.2021

Alarm Types

* חברו : Alarm output hysteresis

m 0

OFF

Setting	Alarm Type	Description
Ent2 = MERt RLrn = YES nod2 = RbS	Absolute value high limit alarm	SV = 5EE2 Alarm ON when PV > SV + HY52 Alarm OFF when PV = SV
Ent2 = Cool ALro = YES nod2 = AbS	Absolute value low limit alarm	SV = SEE2 Alarm ON when PV < SV - $HYS2$ Alarm OFF when PV = SV
Ent? = HEAt Alro = YES nod? = dEu	Deviation high limit alarm	SV = SEE 1+ SEE Z FD Alarm ON when PV > SV + HY5Z Alarm OFF when PV = SV
Ent2 = Cool BLrn = YES nod2 = dEu	Deviation low limit alarm	SV = SEE I + SEEC FD Alarm ON when PV < SV - $HYSZ$ Alarm OFF when PV = SV
HŁ	High temperature alarm	PV > ME-R
LŁ	Low temperature alarm	PV < LE-A